MoCha-pi, an Exogenous Coordination Calculus based on
Mobile Channels

Juan Guillen-Scholten,

Farhad Arbab, Frank de Boer,
Centrum voor Wiskunde en Informatica (CWI)
Kruislaan 413, 1098 SJ Amsterdam
The Netherlands

{juan, farhad, froy@cwi.nl

ABSTRACT

In this paper we present MoCha-7, an exogenous coordi-
nation calculus that is based on mobile channels. A mo-
bile channel is a coordination primitive that allows anony-
mous point-to-point communication between processes. Our
calculus is an extension of the well-known 7-calculus. The
novelty of MoCha-7 is that its channels are a special kind
of process that allow other processes to communicate with
each other and impose exogenous coordination through user
defined channel types. Also new, is the fact that in our
calculus channels are viewed as resources. Processes must
compete with each other in order to gain access to a par-
ticular channel. This makes the calculus more in line with
existing systems. An immediate application of this calcu-
lus is the modeling of the MoCha middleware, a distributed
system that coordinates components using mobile channels.

Categories and Subject Descriptors
D.3.1 [Formal Definitions and Theory]: Semantics

Keywords
Calculus, Coordination, Distributed Mobile Channels

1. INTRODUCTION

In the MoCha Framework [6] components and processes
are coordinated by mobile channels. A mobile channel is
a coordination primitive that allows anonymous point-to-
point communication, enables dynamic reconfiguration of
channel connections in a system, and provides exogenous
coordination.

Mobile channels are interesting for all kinds of entities that
need to be coordinated, but they are specially interesting for

*The research of Dr. Bonsangue has been made possible by
a fellowship of the Royal Netherlands Academy of Arts and
Sciences.

*
Marcello Bonsangue
LIACS (Leiden University)

Niels Bohrweg 1, 2333 CA Leiden

The Netherlands

marcello@liacs.nl

Component Based Software. They provide a highly expres-
sive data-flow architecture for the construction of complex
coordination schemes, independent of the computation parts
of components. This enhances the reusability of systems:
components developed for one system can easily be reused
in other systems with different (or the same) coordination
schemes. Also, a system becomes easier to update: on the
one hand, we can replace a component with another version
without having to change any other component or the coor-
dination scheme in the system. On the other hand, we can
replace the coordination scheme with another one without
changing the components of the system.

Currently, there is an implementation of the MoCha frame-
work. The MoCha middleware [7] implements mobile chan-
nels for communication and coordination of (distributed)
processes and components. However, it lacks a suitable log-
ical model for specification and verification of systems in
the software development phase. Therefore, in this paper we
present MoCha-m, an exogenous coordination calculus based
on mobile channels built on top of the m-calculus [11]. The
novelty of our calculus is in the fact that channels have dif-
ferent types. These types are defined in terms of w-calculus
processes, allowing the introduction of new channel types
without having to change the rules of the calculus itself.
Since the processes don’t know the type of the channels they
deal with, it is easy to coordinate them in an exogenous way:
coordination from outside. Another novelty of our calculus
is the fact that it views channels as resources where pro-
cesses must compete with each other in order to gain access
to a particular channel.

In the next section we introduce the general notion of a
mobile channel while presenting the MoCha framework and
middleware. In section 3 we present the MoCha-7 calculus.
Our calculus provides channels that are more general than
the ones of the MoCha framework. Therefore, in section
4, we give a design pattern for specifying channels that are
compatible with the framework. Afterward, we show a rep-
resentative example in section 5. We conclude with related
and future work in section 6.

Permission to make digital or hard copies of all or part of this work for 2 MOCHA

personal or classroom use is granted without fee provided that copies are“*

not made or distributed for profit or commercial advantage and that copies A channel in MoCha, see figure 1, consists of a pair of
bear this notice and the full citation on the first page. To copy otherwise, t0 two distinct ends: usually (source, sink) for most common
republish, to post on servers or to redistribute to lists, requires prior specific channel-types, but also (source, source) and (sink, sink) for

issi fee. . .
permission and/or a fee special types. These channel-ends are available to the pro-

SAC’05March 13-17, 2005, Santa Fe, New Mexico, USA NG ; . .
Copyright 2005 ACM 1-58113-964-0/05/00035.00. cesses of an application. Processes can write by inserting

values into the source-end, and read by removing values from
the sink-end of a channel; the data-flow is locally one way:
from a process into a channel or from a channel into a pro-
cess.

Process Channel Process

A ﬂ‘ o ‘i“i 8

Figure 1: General View of a Channel.

Channels are point-to-point, they provide a directed vir-
tual path between the (remote) processes involved in the
connection. Therefore, using channels to express the com-
munication carried out within an application is architec-
turally very expressive, because it is easy to see which pro-
cesses (potentially) exchange data with each other. This
makes it easier to apply tools for the analysis of dependen-
cies and data-flow analysis in an application.

Channels provide anonymous communication. This en-
ables processes to exchange messages with other processes
without having to know where in the network those other
processes reside, who produces or consumes the exchanged
messages, and when a particular message was produced or
will be consumed. Since the processes do not know each
other, it is easy to update or exchange any one of them
without the knowledge of the processes at the other side
of the channels it is connected to. This provides a simple
mechanism for composition of processes that are decoupled
in space and time.

The ends of a channel are mobile. We introduce here two
definitions of mobility: physical and logical. The first is de-
fined as physically moving a channel-end from one location
to another location in a distributed system, where location
is a logical address space wherein processes execute. The sec-
ond, logical mobility, is typically defined in the w-calculus
as the ability of passing channel(-end) identities through
channels themselves to other processes in the application;
i.e., spreading the knowledge of channel(-ends) references
by means of channels. This is possible in MoCha. However,
since we view channels as resources (see section 3.1) we de-
fine logical mobility as the changing of channel connections
among processes in a system by means of connect and dis-
connect operations. Both physical and logical mobility are
supported by MoCha.

Mobility allows dynamic reconfiguration of channel con-
nections among the processes in an application, a property
that is very useful and even crucial in systems where pro-
cesses are mobile. A process is called mobile when, in a
distributed system, it can move from one location (where
its code is executing) to another. Because the communi-
cation via channels is also anonymous, when a channel-end
moves, the processes at the other side of the channel are not
aware nor affected by this movement.

Channels provide transparent ezogenous coordination. Chan-

nels allow several different types of connections among pro-
cesses without them knowing which channel types they deal
with. Only the creator of the connection knows the type of
the channel. This makes it possible to coordinate processes
from the outside (exogenous), and thus, change an appli-
cation’s behavior without having to change the code of its
processes.

2.1 Channel Types

Presently, MoCha supports eleven types of channels, with
the same interface, but with different behavior. We give a
short description of four representative channel types. For
more details and the remaining channel types we refer to
the MoCha middleware manual [7].

e Synchronous channel. The I/O operations on the two
ends are synchronized. A write on the source-end can
succeed only when a take operation also atomically
succeeds on the sink-end, and vice-versa. A take oper-
ation is the destructive version of the read operation.

o Asynchronous unbounded FIFO channel. The 1/O op-
erations performed on the two channel-ends succeeds
asynchronously. Values written into the source channel-
end are stored in the channel in a FIFO distributed
buffer until taken from the sink-end.

e Synchronous drain channel. The I/O operations per-
formed on the two ends are synchronized (i.e. succeed
atomically), but this channel has two source-ends. So a
write operation succeeds only when there is also a write
being performed on the other channel-end as well. The
written values are lost.

e Asynchronous spout channel. The 1/O operations per-
formed on the ends of this channel succeed one at a
time exclusively. This channel has two sink-ends. So
the take operations on its two ends never succeed si-
multaneously. The channel produces random values to
take.

2.2 Implementation

The MoCha framework is implemented in the Java lan-
guage using the Remote Method Invocation package (RMI) [10].
This MoCha middleware can be used for both distributed
and non-distributed applications. More details can be found
in [7].

3. THE MOCHA- = CALCULUS

In this section we present the MoCha-7 calculus. MoCha-
m is an extension of the m-calculus [11, 12]. Our calculus of-
fers high-level interface write, take, connect and disconnect
operations on channels whose behavior is user-defined. Just
like in the MoCha-framework, processes have no direct ref-
erences to channels but only to channel-ends, and therefore,
all interface operations are performed on channel-ends.

We use the m-calculus to implement MoCha-7’s interface
I/O actions. Our calculus transforms all write and take ac-
tions into a pattern of traditional m-calculus ones. It does
this transformation when a process is connected to a particu-
lar channel-end and performs an I/O action on it. Therefore,
this transformation can be done only dynamically, when the
system is executing. Static transformation of the MoCha-
« interface actions into traditional m-calculus actions is not
possible here.

We begin by defining the notions of names, threads, chan-
nels, runtime processes and resources. Afterward, we define
each of the MoCha-7 actions. Finally, we discuss structural
congruence and introduce the general rules of the calculus.

3.1 Threads, Channels, Processes and Resourcesie name z to process T'. Threads may use the general iden-

We assume that there exists an infinite set N of names,
with lower-case elements that range over N. In the 7-
calculus names can refer to both data and channels. In
our calculus names, among other things, refer to both data
and channel-ends. A MoCha-m process operates on and ex-
changes with other processes channel-end names instead of
channel names. To avoid confusion, from now on we refer
to m-calculus channels as links. As we shall see, a MoCha-7
channel is a process that uses links to communicate with
other processes. We denote links with ¢ € Links C N.
For channel-ends we use e € ChannelEnds C N. Data
is represented by d € Data C N. Observe that the sets
Links,ChannelEnds, Data are mutually exclusive. However
for convenience, in the paper we often use the same name
for the channel-end and the link that it is translated to. All
data, links, and channel-ends are represented by a, b,z € N.
We assume that our calculus knows the right type of each
name.

A system in MoCha-7 consists of four kinds of processes:
threads, channels, runtime processes and resources. The first
two types are process specifications defined by the user. The
third type consists of the runtime operational semantic pro-
cesses of the first two. The last type contains processes with-
out a body. We use capital letters to denote processes. For
example, we use words like: {7, PRODUCER} for threads,
{K,FIFO} for channels, {P, PROCESS} for runtime pro-
cesses. For resources we use a special notation given in def-
inition 4. A system definition is given by System = (D|S),
where D is the system declaration consisting of threads and
channels. S is the main statement; an initial thread that
creates all other processes.

To model process creation, we assume an infinite set Id
of process identifiers. We refer to A € Id as an identifier
for a runtime process. We refer to Ax as an identifier for
a runtime process of a channel. In the process specification
we write A(y1, ..., yn) to indicate the creation, or invocation,
of process-id A with parameters yi, ..., yn. This identifier A

has a defining equation of the form A(z, ..., zn) = P, where
all the parameters are distinct and free names in P. From
the congruence rule (6) in section 3.3, we can see that the
creation of a process consists of substituting all free names
Z1, ..., Zn by the actual parameters yi, ..., yn

Definition 1. A Thread is a user-defined process specifi-
cation with grammar L? that has the following syntax:

T:: = Z%\Ti | TW|T2 | new z T | A(yi, ..., Yn)
icl
where [is any finite indexing set. The actions ¢ of threads
are:

e | connect to channel-end e

e T disconnect from channel-end e
el(z) write z to channel-end e
e?(z) take z from channel-end e

T unobservable action

The processes Ziel ;. T; are called summations or sums.
If I = {1,2}, for example, then we get the summation
w1.T1 + p2.To. If I =0 then we get the empty sum 0. The
composition T1|T> indicates that these two processes run
concurrently. The restriction new x T restricts the scope of

tifier A. Thus, a thread can dynamically create any process
of type thread or channel in the system.

Channels are processes too. This gives us the advantage
that the behavior of a particular channel type can be defined
in terms of actions. Moreover, we shall see that introducing
a new type of channel consists of just defining a new process
without having to make any changes to the existing actions
or rules.

Definition 2. A Channel is a user-defined process specifi-
cation with grammar L’ that has the following syntax:

K: = Zﬁi.Ki | Ki|K2 | new K | Ax(y1, ..., Yn)
i€l
where [is any finite indexing set. The actions ¥ of channels
are:
¢(z) send z along link ¢
c(z) receive z along link ¢
T unobservable action

Channels are special kinds of processes because they can
perform only the original w-calculus actions. Channels can
use only the channel identifiers Ax. Thus, a channel can
create only channel sub-processes and no threads.

Each channel receives at its creation a user defined number
of ends e, ez, e3,... to communicate with the non-channel
MoCha-7 processes. These ends are specified as the param-
eters of the channel process. Upon invocation of a channel
process the parameter ends are automatically translated to
their respective m-calculus links that comply with the I/O
channel-end actions; see section 3.2. The channel process
specifies the behavior of its ends. For example, whether an
end is a sink, source or both. The process also specifies the
relation between the various ends of the channel in order to
obtain a certain desired behavior.

We now define the (runtime) processes of the user-defined
threads and channels.

Definition 8. A runtime process is an operational seman-
tic process for either a thread or a channel. Its definition is
given by L™ = L¥“?. The runtime process expressions are
defined by the following syntax:

P = Zm.Pi | Pi|P2 | new z P | e[P]| A(y1, ..., Yn)

i€l

where I is any finite indexing set, and the actions m =
puUd.

All the expressions in this grammar are already defined
except for e[P]. This expression symbolizes the fact that
process P is currently connected to channel-end e.

In our calculus channels, and thus channel-ends, are viewed
as resources. Therefore, processes must compete with each
other in order to gain access to a particular channel-end by
connecting to it.

Definition 4. A resource is a process without a body that
always runs in parallel with the processes of a system. There
is a set of resources associated with every channel-end. There-
fore, we define a relation between the name of a channel-end
and its resource names. We denote by R a resource that
belongs to channel-end e.

Each end e of a channel process K has a user defined number
of resources R{, R5, RS,.... We use R® € {R{,R5,R3,...}
to refer to any resource of a particular channel-end e.

3.2 Actions

‘We now define the actions of our calculus. For the MoCha-
7 channel-end actions we define a transition relation —.

send: ¢(x)
This is a m-calculus action where a name z is sent through
link c.

receive: c¢(z)
This is the complementary action of send, where a name z
is received through the link c.

connect: e |.P + Q| R® — e[P]

For a successful channel-end connection one of the resources
R° of the channel-end e must be available. After the action
the resource R is removed from the expression (hidden)
and is, therefore, not available anymore for any other pro-
cess outside the scope [] that might know e. By counting
the consumed resources, we know how many processes are
currently connected to the channel-end. Processes that try
to connect to a particular channel-end while all its resources
are already taken by other processes, must wait until a re-
source becomes available again.

In the MoCha framework design pattern (see section 4)
each channel-end has exactly one resource. The success of a
connect operation, therefore, guarantees exclusive channel-
end access for its performing process P.

connect(2): ele | .P + Q] — e[P)]

If a process performs a connect action on a channel-end that
it is already connected to, then the operation always suc-
ceeds. No resources are affected by this action.

disconnect: e T P + @ “Lp

This action has two cases: one where the process initially
is connected to the channel, and one where it is not. In
both cases process P will be disconnected from the channel-
end after the operation. This rule applies if and only if P
contains no original m-calculus actions e(z) or e(z) for any
given z before the disconnect action takes place.

The action produces a label to determine what happens
to the channel-end resource at a higher level. If P was con-
nected to the channel-end, then the restriction rule (3), in
section 3.4, dictates that a resource R® becomes available to
other processes. If P was not connected to the channel-end,
then no resource becomes available. We assume that the
label is implicitly dropped at the highest level.

We now present the rules for the actions write and take.
The idea is to dynamically transform these high-level inter-
face actions into a communication pattern consisting of the
standard ¢(z) and c(z) m-calculus actions. These patterns
are needed to ensure exogenous coordination, by making
every MoCha-7 I/O action between a thread and a channel-
end synchronous.

write: e[el(a).P + Q] — e[e{a).e(N).P]
A write action on a channel-end e is transformed into a
communication pattern using link e if process P is currently

connected to the channel-end. For simplicity, in this paper
we use the same name for the channel-end as well as for
the link it is translated to. In this pattern, first a value a
is communicated to the channel process, then we wait for
an acknowledgment A\ to be received through e. We shall
always use \ as a special reserved name for acknowledgments
and requests (see the take action). As stated in section 3.1,
channels match this I/O link pattern. They do so by first
matching a thread’s send €(a) with a receive e(z). Later, at
some point in time, they match a thread’s receive e(A) with
a send e(\).

Observe that we don’t have any means to check whether
the channel-end e is a source-end or not. However, we don’t
need to. If a sink-end is given, the rule translates the in-
terface action into the w-calculus actions anyway. However,
these actions deadlock because they do not match the com-
munication pattern used by the channel process.

Take: e[e?(b).P + Q] — e[e()\).e(b).P]

A take action on a channel-end e is transformed into a
m-calculus communication pattern using its corresponding
link e if process P is currently connected to the channel-
end. First, a request A to take is sent to the channel, then a
name b is received from the channel process through e. As
stated in section 3.1, channels match this link I/O pattern.
They do so by first matching a thread’s send €(\) with a
receive e(\). Later, at some point in time, they match a
thread’s receive e(b) with a send €(z). Just like with the
write action, we don’t put any restrictions on the type of
the channel-end.

Taw: T.P + Q — P
Finally, 7 represents the unobservable action.

3.3 Structural Congruence

Before defining the reaction rules we need to define a
structural congruence relation. We need this relation to
identify the process expressions that are intuitively equiv-
alent by having the same structure, but are nevertheless
syntactically different. It is clear that for channel processes
we can take the m-calculus definition of structural congru-
ence as given in [11]. One might think that this congruence
also holds for the MoCha-7 calculus in general since the
new communication actions can be translated into the origi-
nal ones. However, this is not the case since we need to look
at whether a process is connected to a particular channel-
end before transforming a high-level interface action into a
pair of m-calculus ones. This can only be done dynamically
at execution time. Therefore, we need to re-define the no-
tion of structural congruence for our calculus by adding an
equation for the connected scope e[].

Definition 5. Two process expressions P and) in the
MoCha-7 calculus are structurally congruent, written P =
Q, if we can transform one into the other by using the fol-
lowing equations (in either direction):

1. Systematic change of bound names (alpha-conversion)
2. Reordering of terms in a summation

5. PlO=P,P|Q=Q|P,Pl(QIR)=(P| QIR
4

.newz(P| Q)=P|newz Q ifz ¢ fn(P)
newzx0=0, newxy P =newyz P

Parallel Restriction(1)
P— P pP— P
P|Q — P'|Q new © P — new z P’
Restriction(2) Restriction(3)
p—P p-<Lp

e[P] — e[P'] e[P] — P' | R®
Structural Rule
P— P

_ if P=Qand PP = Q'
Q— Q'

Reaction:

(a).P+ M) | (¢(b).Q +
(c(a).P+ M)+ S| (¢
(a).P+ M) | e[(c(b).Q +

— {"/a}P
+N) —

N)
b).Q {
N +5 — {

Q
[a}elP]] Q
/a}P | e[Q]

|
b
b

(¢
el
(c

Figure 2: The Reaction Rules of MoCha-n
P |e[Q] ife¢ n(P)

6. A(j)={"/.}P it A@) Y P

where n(P) are all the names in process P, with n(R°) = e.
fn(P) are all the free names in process P.

Analogous to equation (4), our added equation (5) states
that a process not containing e can be included or excluded
from the scope e[] without changing the meaning of the
process expression. Observe that we do not add e[0] = 0,
for this is not the case in our calculus. We want processes
to explicitly disconnect from channel-ends.

3.4 Reaction and other Rules

‘We now define reaction and other support rules of MoCha-
m. We take the m-calculus rules and add two extra restric-
tions and reactions. The rules are given in figure 2.

The reaction rule works at the m-calculus level and there-
fore is oblivious to whether or not processes are connected
to particular channel-ends or not. However, we need to take
into account that processes may be in the scope of a channel-
end e, written as e[]. The restriction rule (2) gives us the
means to let a reaction happen within this scope. However,
we need two additional rules for the cases where only one of
the parallel processes is within the scope e[].

4. THE MOCHA FRAMEWORK DESIGN
PATTERN

The MoCha-m calculus allows channels to have a user
defined number of channel-ends. These ends are of types
source, sink or both. For each end there is a user defined
number of associated resources. All of this is specified in
the definition of the channel process type. Therefore, the
calculus is more general than the MoCha framework where
there are certain restrictions on the channel-ends and their
resources. In order to be able to focus on modeling only

the MoCha framework, we introduce a design pattern. This
pattern states that (1) all channels have exactly two channel-
ends; (2) their end types are either sink or source but not
both; and (3) every channel-end has exactly one resource.

To define our own channel types in the MoCha-7 calculus,
we must write a channel process that receives the channel-
end links as parameters, together with the capacity of the
channel (if any). This process then must match the commu-
nication patterns of the interface write and take operations
(see section 3.2) and relate the ends of the channel using
m-calculus actions.

We make one further restriction in our pattern: (4) we de-
mand that the actual channel-end parameters are all unique
and distinct from each other for each channel. This restric-
tion obligates us to bind the channel-ends before creating a
channel, and to use them for the invocation of only one chan-

d
nel process. For example, S Y pew (€1, €2, €3, e4)(K(e1,e2)
| K(es3,es)), where S creates two channel processes of type

K is allowed, but not S Y pew (e1,e2)(K(e1,e2) |
K (e1, e2)), where S creates two channel processes that share
their ends.

4.1 Channel Examples

We now give three channel type process specifications as
examples of how to define channel processes that conform
to the MoCha design pattern. We already explained their
behavior in section 2. The channel processes carry the name
of the type. However, for simplicity in the definition of
each channel we refer to it as the channel process K instead
of, for example, SYNCHRONOQUS. All channels receive two
links {l,7} as actual parameters. Each link corresponds to
a channel-end used by thread processes. For convenience,
in the examples we write CE(l) to denote the channel-end
that corresponds to link /.

Synchronous

K(l,r) YRR | K'(1,7)

K'(1,r) < 1(2).r(N).(UA) | 7(2)).K'(1,7)

This channel process has a source-end CE(l), and a sink-
end CE(r). Initially the process first receives a name,z, from
its source-end, then sequentially it receives a request from
its sink-end. Finally, it sends in parallel both an acknowl-
edgment to its source-end and the name z to its sink-end.
Afterward, the process loops and starts again waiting for
the next write on its source-end.

Observe that, a synchronous channel allows the two (take
and write) operations on its ends to succeed atomically. This
does not imply that these operations must be performed

simultaneously.
FIFO
K(l,r) % R | R" | K'(1,r,0)
! ~\{|7]|= def
K'(1,r,) 171=00 = 0(0) 00 K (I, 7, (v))
K'(Lr, D)1= Y) I K (1, (o,

vz, v)))+
(r(A).T(v € U).K'(I, 7, {v2, .., v5))))
This is the unbounded FIFO channel, with source-end
CE(l) and sink-end CE(r), where we model the buffer as
a sequence or vector of names ¥ that is passed on as a pa-
rameter of the channel process. Observe, that if we want to
model a LIFO channel type we merely need to take vz out

Figure 3: Example, Calling Mobile from a Car

of the channel each time, instead of v;. If we want to model
a BAG channel type we can take any v, where k£ < || out
of the channel instead of v;.

Synchronous Drain

K(,r) YRR | K'(I,7)
K'(Lr) € (Ua)r(m).(10) | 7))).K(L,7)

This channel has two source-ends, { CE(l), CE(r)}, that
allows operations to succeed on them only atomically. The
channel first receives a value from each source-end in a se-
quential manner. Then, it sends an acknowledgment back to
the ends in parallel. Afterward, the process loops and starts
again waiting for the next pair of writes on its source-ends.

All these channel types are implemented in the MoCha
middleware [7]. Other channel types of the middleware are
specified in the same way.

5. MOBILE PHONES EXAMPLE

The mobile phones example is presented in [11] to show
how well the w-calculus deals with mobility. This is a rep-
resentative example for the kind of systems that are easy
to implement with the MoCha middleware. Therefore, in
this section we present the same example but now using the
MoCha-7 calculus.

In this example cars are moving around while their passen-
gers make calls using on-board mobile phones at arbitrary
times. For this purpose each car is connected to a nearby
transmitter. However, if a car gets too far from this trans-
mitter it is switched to another more nearby transmitter.
The coordination of all transmitters is done by a control
unit.

For simplicity, just like in[11], we consider only one car and
two transmitters. In figure 3 we show how the car switches
from one transmitter to the other. The car is linked to the
transmitters by two channels, an outgoing channel talk and
an incoming channel listen (from the point of view of the
car). In this example, we use a handy notation where we
denote the source-end of a channel as channel and the sink-
end of the same channel as channel. The car is connected
to the source-end talk of channel talk and to the sink-end

listen of channel listen. The transmitter is connected to the
other ends talk and listen. The specification of the car is:

Car(talk, listen) = new(dy) (talk | listen | +talk!(d:)
+listen?(dz) + talk 7 .listen 1).Car(talk, listen)

The car can either connect to the channel-ends, disconnect
from the ends, or either talk or listen when connected. In
contrast with the m-calculus example, our car does not (need
to) receive any new channel-ends for communication from
the transmitter after a switch. Our car does not even know
that a switch is taking place nor with which transmitter it
is communicating.

The transmitters have two incoming channels gain and
lose. They are connected to their sink channel-ends gain
and lose. Initially a transmitter is idle, but it becomes ac-
tive when it receives the ends talk and listen through the
channel gain. After activation the transmitter starts the
communication with the car. If an active transmitter re-
ceives the same two channel-ends through the channel lose,
it terminates the communication and becomes idle. Ob-
serve, that we don’t really need the two channels gain and
lose, only one channel is sufficient. However, we want to
stay close to the original example. Therefore, we model the
two channels instead of just one. Here is the specification of
the transmitter, where i = 1, 2:

IdleTmnsi(g.a'i'ni, lq:éei) def .ga'i'nj, l lose; 1 .gdini?(tdlk)
.gain;?(listen).talk | .listen |
.Trans; (gdin,;, lose;, talk, listen)

Tmnsi(gdim, loéei, tde, lisien) =
new(dz) (talk?(dy) + listen!(dz))
.Trans; (gdini, loéei, tde, lisien)
+lose; ?(talk).lose;? (listen).talk 1 .listen 1

IdleTrans; (gdini, lose;)

The control unit receives at its initialization the source-ends
of each gain and lose channel. The control process then
connects to these channel-ends. Besides these ends, control
also receives as parameters the channel-ends talk and listen.
It first writes these ends to the gainl channel-end, so that
transmitter 1 can start interacting with the car. This is the
situation in figure 3(a). At some point in time, it writes the
ends to loz;‘el7 making transmitter 1 idle again. Fortunately,
afterward, it writes the ends to the gainy channel-end. Now
transmitter 2 becomes active and takes over the interaction
with the car. This is the situation in figure 3(b). After
completing the switch, the control unit disconnects from all
connected channel-ends and terminates. We give the speci-
fication:

Control (gain;, lose;, talk, lis{fen) e gain; | .lose; |
.gainy | (talk).gainy |(listen)
losey(talk).loser | (listen). gains!(talk)

.gaim!(lisien).gai’m 1 .lose; T (where i =1,2)

Finally, we now must set up the system. The system process
creates all others including the channel processes. It is this

process that initially distributes all channel-ends.

Sys = new(tdlk, ta“lk, lisi‘en, lisien, loéei, loéei, gain, gdini)
(SYNCHRONOUS (gaini, gain) |
SYNCHRONOUS (lose;, lose;) | FIFO(talk, talk) |
SYNCHRONOUS (listen, listen) |
Control(gain,, lose, talk, lisien) |
IdleTmnsl(ga.inl, lo:éel) | IdleTmnsz(ga.ing, logez) |
Car(talk, listen)) (where i = 1,2)

Observe that, in contrast with the m-calculus example, we
can change the behavior of the system by simply choosing
other types of channels between the processes.

To make the example more realistic we could introduce more
cars than just one. In the original m-calculus example this
leads to changing the specification of all processes and intro-
ducing new links. In MoCha-7 adding more cars is very easy.
We just add more Car processes with parameters talk and
listen. These processes then automatically compete among
themselves to gain access to the channel-end pair. No other
changes are required.

6. CONCLUSIONS, RELATED AND FUTURE

WORK

In this paper we presented MoCha-7, an exogenous co-
ordination calculus based on mobile channels. A novelty of
our calculus is in the fact that channels are not just links
but special kinds of processes. This allows us to have user
defined channel types without having to change the rules of
the calculus itself. Our calculus provides anonymous com-
munication; the communicating processes do not know each
other. This combined with the fact that we can specify our
own channel types, gives MoCha-7 the property of placing
any type of channel between processes without them know-
ing how different channel types affect their behavior; yield-
ing exogenous coordination. Another novelty is the fact that
our calculus treats channels as resources. Processes must
compete with each other in order to gain access to a partic-
ular channel. This makes MoCha-7 a more realistic model
of existing systems.

Besides MoCha-7 there are other calculi that model dis-
tributed systems; see [5] for an overview. Two well-known
calculi are the Distributed m-calculus [8] and the Ambient [2]
calculus. The Distributed m-calculus is an extension of the
m-calculus with an explicit notion of location. Channel com-
munication is synchronous and local; the processes involved
in the communication must reside at the same location. In
the Ambient calculus there is a message-driven communica-
tion that always takes place locally within a single ambient.
An ambient is a bounded environment where processes co-
operate. Both these calculi are good candidates to follow
for extending the MoCha-7 calculus if an explicit notion of
location is desired.

MoCha-7 is based on the mobile channel coordination
primitive. The KLAIM kernel [4] calculus is an asynchronous
high-order process calculus that is based on the Linda [3]
coordination paradigm. In KLAIM processes anonymously
communicate via a shared multi-set of tuples. It is certainly
possible to model all different MoCha channel types with
this calculus. However, this cannot be done in an exogenous
way; meaning that, the communicating processes of KLAIM
do not have the option of leaving the desired coordination

behavior up to the internals of a user-defined channel. In-
stead, they must implement such behavior themselves. An-
other modeling language for distributed systems based on
channels is presented in [13].

The MoCha framework strongly relates to Reo [1], a channel-
based exogenous coordination model wherein complex coor-
dinators, called connectors, are compositionally built out of
simpler ones. The simplest connectors in Reo are a set of
channels with well-defined behavior supplied by users. The
MoCha-7 calculus can be extended in order to support Reo.
In Reo, channels are composed together into connectors by
using nodes. Just like MoCha-7 channels, a node can be
modeled as a special kind of process with a specific commu-
nication pattern with its channels.

7. REFERENCES

[1] F. Arbab, Reo: A channel-based coordination model
for component composition, Mathematical Structures
in Computer Science, Vol. 14, No. 3, pp. 329-366, June
2004.

[2] L. Cardelli and A. D. Gordon. Mobile ambients,
Theoretical Computer Science, 240(1):177-213, June
2000.

[3] N. Carriero, D. Gelernter. How to Write Parallel
Programs: a First Course, MIT press, 1990.

[4] R. De Nicola, G.L. Ferrari, and R. Pugliese, KLAIM:
A kernel language for agents interaction and mobility,
IEEE Transactions on Software Engineering, 24(5),
pages 315-330, 1998.

[5] G.L. Ferrari, R. Pugliese and E. Tuosto, Foundational
Calculi for Network Aware Programming, Technical
Report, Universita’ di Firenze, ¢/o Dipartimento di
Sistemi ed Informatica, 2000.

[6] J.V. Guillen-Scholten, F. Arbab, F. S. de Boer, M. M.
Bonsangue, ” A Channel-based Coordination Model for
Components”. Electr. Notes Theor. Comput. Sci.
68(3), Elsevier Science, 2003.

[7] J.V. Guillen-Scholten and F. Arbab, MoCha,
easyMoCha and chocoMoCha Manual v1.0, CWI
Technical Report, Amsterdam, 2004.

[8] M. Hennessy and J. Riely, Resource Access Control in
Systems of Mobile Agents, HLCL ’98: High-Level
Concurrent Languages (Nice, France, September 12,
1998), U. Nestmann and B.C. Pierce, Eds. ENTCS
16.3, 1998.

[9] C.A.R. Hoare, Communicating Sequential Processes,
Prentice Hall, London, UK, 1985.

[10] Sun Microsystems , Java Remote Method Invocation -
Distributed Computing for Java, white paper available
at java.sun.com/rmi, 2004.

[11] R. Milner, Communicating and Mobile Systems : The
Pi-Calculus, Cambridge University Press, May 20,
1999.

[12] J. Parrow. An Introduction to the pi-Calculus. In
Handbook of Process Algebra, ed. Bergstra, Ponse,
Smolka, pages 479-543, Elsevier 2001.

[13] P. Wojciechowski, and P. Sewell, Nomadic Pict:
Language and Infrastructure Design for Mobile
Agents, First International Symposium on Agent
Systems and Applications (ASA’99)/(MA’99), Palm
Springs, CA, USA, 1999.

